Chapter 3 Diffraction Theory

Elastic scattering

- interaction of e⁻ beam / atom (chapter 3)
- interaction of e⁻ beam / unit cell (chapter 16)
- interaction of e⁻ beam / crystalline sample (chapter 16)
- reciprocal lattice(chapter 12)
- Diffraction Pattern
- Shape Effect of Nano-object (Chapter 17)

3.1 interaction of e⁻ beam / atom

 電子與原子的作用基本上可分成兩大類 (a)彈性散射(elastic scattering)

入射電子不損失能量,因此我們稱之為"彈性散射"

(b)非彈性散射(inelastic scattering)

入射電子損失能量,因此我們稱之為"非彈性散射"

3.1.1 Elastic Scattering (particle picture)

not nucleus.

3.1.2 Wave Model of Electron Scattering

- 入射電子可近似為平面波,因為波長比起觀 察者距離短得太多
- 當入射電子波接近原子核時,就會感受到原 子庫侖位能的作用,因而改變波長及方向
- 這就如同光波進入不同的介質(如由空氣進入水中),引起折射。
- 連續加速和減速的帶電粒子亦伴隨(連續)產 生x-ray成為Bremsstrahlung X-ray
- 折射率與原子庫侖位能有關

$$n = \frac{\lambda_0}{\lambda_v} = \left(1 + \frac{V}{E_0}\right)^{1/2}$$

$$\lambda_0 \cong \frac{12.2}{E_0^{1/2}} \quad \lambda_v \cong \frac{12.2}{(E_0 + V)^{1/2}}$$

 $n \approx 1 + 10^{-4}, E_0 = 100 kV, V \approx 10 volts$

3.1.3 Imaging of Single Atom

Incoming electron interacts with electrostatic potential contributing from both nucleus and electron cloud (X-ray only interacts with electron cloud)

$$V = \frac{e[z\delta(r) - \rho(r)]}{4\pi\varepsilon_o r}$$

Lens does two focus action

NTHU

$$f^{el}(\theta) = f^{el}(H) = \pi \mathfrak{I}(U(r)) = \frac{2\pi me}{h^2} \mathfrak{I}(V_{at}(r))$$

$$\mathcal{F}^{-1}(\mathsf{f}^{el}) = \mathcal{F}^{-1}(\mathcal{F}(\mathsf{V}(\mathsf{r}))):$$

Image Plane

Further on atomic scattering factor

NTHU

Au

0.4

0.6

Cu

0.2

Δ

0

$$V = \frac{e[z\delta(r) - \rho(r)]}{4\pi\varepsilon_o r}$$

$$f^{el}(\theta) = f^{el}(H) = \pi\mathfrak{I}(U(r)) = \frac{2\pi me}{h^2}\mathfrak{I}(V_{at}(r))$$

$$f^{el}(H) = \frac{1}{H^2}\frac{me^2}{2\pi h^2\varepsilon_o}\{Z - f^x(H)\} \qquad \boxed{|\vec{H}| = \frac{2\sin(\frac{\theta}{2})}{\lambda}} \qquad f^{el}(\theta) = \frac{\lambda}{\sin(\frac{\theta}{2})}\frac{me^2}{8\pi h^2\varepsilon_o}\{Z - f^x(H)\}$$

$$f^x(H) \text{ or } f^x(\Theta) \text{ is called x-ray scattering factor and is the Fourier transform of electron cloud, since the x-ray only interacts with the electron cloud. The unit of f^{el}(\Theta) \text{ is the length (nm)}$$

- f^{el} decreases as increasing of θ
- f^{el} decreases as decreasing of λ
- f^{el} increases as increasing of Z
- refer to "P.A. Doyle Hartree-Folk X-Ray and Electron Scattering Factors".Acta Cryst.(1968)A24, 390

3.1.4 Scattering (Diffraction) from two atoms

- coherent length > "a"

NTHU

3.2 Scattering (Diffraction) from unit cell

入射波通過晶胞時,"屬於"晶胞的原子依其相對位置不同,而產生不同相位差的繞射波

· 在遠方的觀察者(透鏡的聚 焦面,很遠平行光被聚焦到此), 觀察到這些波的總和

 • 在遠方觀察者偵測到的強度 與入射波振幅<u>晶胞內</u>原子位能, <u>晶胞內原子</u>相對為置有關

結構因子

 $F(\boldsymbol{\theta}) = \sum f_i(\boldsymbol{\theta}) e^{2\pi i \underline{\mathbf{H}} \times i}$

1. f_i是在第i個原子位能U_i的傅立葉轉換

2. r_i為第i個原子的座標(x_i, y_i, z_i)-實空間向量

3. <u>H</u>為倒空間向量

$$F(\theta) = \sum_{i}^{\infty} f_i e^{2\pi i (hx_i + ky_i + lz_i)}$$

(a)體心立方(body-center cubic,bcc) 晶胞內有兩個原子(0,0,0)及(1/2,1/2,1/2)

 $F=f\{exp(2\pi i(h \cdot 0+k \cdot 0+l \cdot 0)+exp(2\pi i(h \cdot 1/2+k \cdot 1/2+l \cdot 1/2))\}$ =f{1+exp(\pi i(h+k+l)}h,k,l 為平面指數

選擇法擇(selection rule)

F=2f 要是 h+k+l=偶數 =0 要是 h+k+l=奇數

體心立方的晶體結構的倒空間是面心立方

(b) 面心立方(face-center cubic,bcc)

晶胞內有四個原子(0,0,0), (1/2,1/2,0), (0,1/ 2,1/2)及(1/2,0,1/2) F=f{exp(2 π i(h·0+k·0+l·0)+exp(2 π i(h·1/2+k·1/2+l·0)+exp(2 π i(h·0+k·1/2+l·1/2)+exp(2 π i(h·1/2+k·0+l·1/2)}

=f{1+exp($\pi i(h+k)$ +exp($\pi i(k+l)$ +exp($\pi i(h+l)$)} h,k,l 為平面指數

選擇法擇(selection rule) F=4f 要是 h, k, l=un-mixed

=0 要是 h, k, l=mixed

面心立方的晶體結構的倒空間是體心立方

(c) 面心立方結構與鑽石結構

Diamond:
$$(000)$$
 $(\frac{1}{2}\frac{1}{2}0)$ $(\frac{1}{2}0\frac{1}{2})$ $(0\frac{1}{2}\frac{1}{2})$
+ $(\frac{1}{4}\frac{1}{4}\frac{1}{4})$ $(\frac{1}{4}\frac{1}{4}\frac{1}{4})$ $(\frac{3}{4}\frac{3}{4}\frac{1}{4})$ $(\frac{3}{4}\frac{1}{4}\frac{3}{4})$ $(\frac{1}{4}\frac{3}{4}\frac{3}{4})$ $(\frac{1}{4}\frac{3}{4}\frac{3}{4})$ $(\frac{1}{4}\frac{3}{4}\frac{3}{4})$

Basis: super lattice diffraction

 $F = f\{exp(2\pi i(h \cdot 0 + k \cdot 0 + l \cdot 0) + exp(2\pi i(h \cdot 1/4 + k \cdot 1/4 + l \cdot 1/4))\}$

 $\{1 + \exp(\pi i(h+k) + \exp(\pi i(k+l) + \exp(\pi i(h+l)))\}$

Lattice fundamental diffraction

滿 描 $F = f_{Ni} + f_{Al}$ h+k+l=偶(基本晶格, fundamental lattice) 注 $= f_{Ni} - f_{Al}$ h+k+l=奇(對bcc而言這項是0,超晶格 superlattice) (e) Ni₃Al, Cu₃Au(LI₂) 結構(有序結構) Al(0 0 0),Ni(1/2 1/2 0),(1/2 0 1/2),(0 1/2 1/2)

$$F = f_{Al} + f_{Ni} \left\{ e^{\pi i (h+k)} + e^{\pi i (h+l)} + e^{\pi i (k+l)} \right\}$$

$$F = (f_{Al} + 3f_{Ni})$$

=2(f_{Al}-f_{Ni}) h,k,l 全偶或全奇 基本晶格(fundamental lattice) h,k,l 是混合奇數或偶數 超晶格(super lattice)

若Ni₃Al及Cu₃Au 為無序結構則超 晶格點陣消失

3.3 interaction of e⁻ beam / crystalline sample

相位差=(AB+BC)/λ=n 時,有建設性干涉

若平面間距為d,反射角 $\theta_{\rm B}$ AB+BC=2d sin $\theta_{\rm B}$ = n λ

此公式稱為Bragg's Law

Bragg 因此公式而得到諾貝爾獎.

・從Bragg's公式我們可以清楚地看到平面間距愈小者繞射角愈大,因此若我們知道入射波的波長λ(=12.2/E^{1/2}),我們可藉由散射角度的量測來決定平面的間距.

•這是電鏡繞射術在結晶訊息的重要工作.

以"波"的觀念來看: <u>H</u>= $k'-k_0$ (Bragg's condition) H⊥原子平面跡 (plane trace) 原子平面跡是k₀及k'的分角線 $1/2 |H| = |k_0| \sin \theta_B$, $|k_0| = 1/\lambda$ $\lambda=2/|H| \sin \theta_{\rm B}$, 與 $\lambda=2d \sin \theta_{\rm B}$ 比較 |H|=1/d, 且H //原子平面之法向量 (有建設性干涉的原子平面)

⊥原子平面跡

{H}代表晶體可產生"建設性"干涉的平面組,其方向為平行平面之法向量且長度為對應的平面間距之倒數——倒晶格空間

(晶體結構與繞射花樣)

為何需要另一個空間?

- •倒空間能使我們方便描述及處理晶體繞射的問題
 •事實上,"倒"晶格空間和"實"晶格空間一樣的"真實"
 •我們可以把晶體想成有兩個"晶格"一個"實"晶格, 一個"倒"晶格
 - 實晶格是晶體本身,倒晶格則是繞射空間的點陣

Fourier Transform of periodic function

1) 倒空間: 與實 空間一樣真實

 2) 倒空間的一點 相對於實空間的 一平面
 3) 倒空間的一點
 至原點的距離等
 於平面間距的倒
 數

3.3.2 Ewald Sphere and Laue Zone

•以k₀方向通過晶格原點以 畫一球,稱為Ewald球

• K_0 方向改變Ewald球亦跟著改變

•倒晶格就如同事與晶體(時空間) 是訂在一起的.晶體傾斜,則倒晶 格亦被傾斜.

•對電子繞射而言, $|k_0| \approx |k| >> |g_{hkl}|$

$$\begin{vmatrix} k_0 \end{vmatrix} = \frac{1}{\lambda} = \frac{1}{0.037\text{\AA}} \cong 25 \frac{1}{\text{\AA}}$$
$$\begin{vmatrix} g_{hkl} \end{vmatrix} \approx \frac{1}{d_{hkl}} = \frac{1}{2}\frac{1}{\text{\AA}} = 0.5\frac{1}{\text{\AA}}$$
$$\begin{vmatrix} k_0 \end{vmatrix} \approx 50 \begin{vmatrix} g_{hkl} \end{vmatrix}$$

- •Ewald 球切過第0層的勞厄區時幾乎近似一平面(而非球面) 因此在原點附近的倒晶格點幾乎都作落在Ewald球上,也就是 有很多組平面都近似滿足Bragg's繞射條件
- •我們觀察到的繞射花樣事實上是第0層的倒空間中原點附近的點陣

•在ZOLZ的倒晶格點幾乎作落在Ewald球上,也就是近似的滿足 Bragg's繞射條件 g=k'-k₀ or 2dsin $\theta_{\text{B}} = \lambda$ $|g| = \frac{1}{d}$ g⊥原子平面軌跡

•在電子繞射的繞射條件下,我們在後聚焦面看到的其實是二維的ZOLZ.

3.3.4 EXAMPLES

Zone axis SADPs have symmetry closely related to symmetry of crystal lattice

Example: FCC aluminium

4-fold rotation axis

2-fold rotation axis

6-fold rotation axis - but [1 1 1] actually 3-fold axis Need third dimension for true symmetry!

[1 | 1]

Ring diffraction patterns

Larger crystals => more "spotty" patterns

Example: ZnO nanocrystals ~20 nm in diameter

Ring diffraction patterns

If selected area aperture selects numerous, randomly-oriented nanocrystals, SADP consists of rings sampling all possible diffracting planes - like powder X-ray diffraction

Example: "needles" of contaminant cubic MnZnO₃ - which XRD failed to observe! Note: if scattering sufficiently kinematical, can compare intensities with those of X-ray PDF files

Amorphous diffraction pattern

Crystals: short-range order and long-range order

Amorphous materials: no long-range order, but do have short-range order (roughly uniform interatomic distances as atoms pack around each other)

Short-range order produces diffuse rings in diffraction pattern

Example:

Vitrified germanium (M. H. Bhat *et al.* Nature **448** 787 (2007)

Crystallographically-oriented precipitates

Co-Ni-Al shape memory alloy, austenitic with Co-rich precipitates

Bright-field image

Dark-field image

Burgers relationship:

 $\frac{1^{\text{st}} \text{ variant of } \underline{h.c.p. \ \epsilon-Co}}{2^{\text{nd}} \text{ variant of } \underline{h.c.p. \ \epsilon-Co}} (110)_{\text{B2}} //(001)_{\text{h.c.p.}}; [-11-1]_{\text{B2}} //[110]_{\text{h.c.p.}}}$

Double diffraction

Special type of multiple elastic scattering: diffracted beam travelling through a crystal is rediffracted

Example I: rediffraction in different crystal - NiO being reduced to Ni in-situ in TEM Epitaxial relationship between the two FCC structures (NiO: a = 0.42 nm Ni: a = 0.37 nm)

Formation of satellite spots around Bragg reflections

Double diffraction

Example II: rediffraction in the same crystal; appearance of forbidden reflections Example of silicon; from symmetry of the structure {2 0 0} reflections should be absent

However, normally see them because of double diffraction

Simulate diffraction pattern on [1 1 0] zone axis:

			0					•					0				•					۰				•				0				•							
15	10	9			5 5 0	7			5	5 0	5			15	50	3			5 :	51			15	5 0	-			55	1			5 0	160			55	7			5 5	19
)		4	4	8			4	4	6			4	4	ł		2	ī 4	2			4	-	0		4	4	2			4	4		1	4	0-1		2	4	00		4
111	99 0	9			33	7			3	3	5			1 101	3	3			3	3 1			3	3	=		1	3	3		3	3	15			3 3	7			3 3	102
)		14	2 2	8			2	2	6			2	2 4	ł			2 2	2			2	2	0		2	2	2			2 2	4		24	2	-0		2	2	00		2
		9			1 1	7			1	1	5			1	-	3			ľ	5			1	ļ			ī		m		1	1	5		1	1	7				401
)		0	00	8			0	0	6			°	0	4		0	0	2				⊕			0	•	2		¢	0	4		C	0	9-1		¢	00	00		a
1	1	9			1 1	7			1	-	5			1	•	3		1	Č	5			1	Ī	1		1		3		1	1	5		1	•	7				9
)		2	2 2	8			2	2	6			2	2	•		2	2 2	2			2		0		2	2	2		2	2 2	4		2	2	0-1		2	2 0	00		2
141	0 144	9			3 3	7			3	9 6	5			(m)	- n	3				3 1			3	- m	=		3	33	140		3		5		3	3 3	7			3 3	9
)		4	4 0	8			4	4	6			4	4 0	ŧ		4	4	2			4	1 T	0		4	4	2		4	4 0	4		4	4	-0		-	4 0	00		4
5	l títi 🕆	9			5 0	7			5	150 0	5			5	0 CH	3		1	5	51			5	0 01			5	5 0	1441		5	15 0	140		5	5 5	7			5 5	10
		6	6	8			6	0.0	6			6	6 4	ŧ		ł	6	2			6	0.0-1	0		6	6 0	2		6	- -	4		6	6	6		4	6	00		

Fourier Transform of Top-Hat Function

Fraunhofer Diffraction

NTHU

 $F(H)=\mathcal{F}(f(x))$ Incident =sin(πwH)/πH plane wave ≶ f(x) D >>w

3.3.4 Shape Effect for nano-object

3.3.5 Thin Foil Effect

•每一晶格點沿著Z方向(i.e 垂直試片表面)被一棍狀函數代替.

3.3.4 Diffraction from nano-Precipitates, particles

Diffuse scattering around [200] Bragg peak

3.3.5 晶軸" (Zone axis)

•rel-rod 的長度與晶體的厚度成反比

•[u v w]是所有 {h k l} 平面的交線,稱為"晶軸" (Zone axis) 晶軸為各平面之交線晶軸方向垂直於各平面之法向量 *•事實上若電子束平行於晶軸沒有任何一組平面是滿足繞射條 件。(都是薄樣品的條件下而近似滿足Bragg's條件)

晶軸繞射花樣

習慣上,S>0倒晶格點在Ewald球內部;S<0倒晶格點在Ewald球內部

